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TheoreticalMolecular Descriptors Relevant to theUptake of Persistent
Organic Pollutants from Soil by Zucchini. A QSAR Study†
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ABSTRACT: The uptake of persistent organic pollutants (POPs) from soil by plants allows the development of phytoremediation
protocols to rehabilitate contaminated areas. The use of diverse theoretical descriptors has been reported in the literature for
developing quantitative structure-activity relationship (QSAR) models for predicting the bioconcentration factors (BCFs) of
POPs in different plants. In this paper an evaluation is given on the molecular properties of POPs in terms of theoretical molecular
descriptors that are relevant to the uptake and accumulation of these persistent pollutants from soil by two zucchini varieties.
Statistically significant and predictive linear regression models have been developed for the BCF values of 20 polychlorinated
dibenzo-p-dioxins/dibenzofurans and 14 polyhalogenated biphenyls in two zucchini varieties based on retrospective data. The
relevant parameters have been selected from a set of 1660 DRAGON, 150 VolSurf, and 11 quantum chemical descriptors. The two
most significant regression models, containing VolSurf, DRAGON GETAWAY, and quantum chemical descriptors, displayed the
following statistical parameters: (eq 3) n = 27, R2 = 0.940, q2 = 0.922, SE = 0.155, F = 392.1; (eq 4) n = 27, R2 = 0.921, q2 = 0.898,
SE = 0.161, F = 140.4. Predictive capabilities of the equations have been validated by using external validation sets. The QSAR
models proposed might contribute to the development of viable soil remediation strategies.

KEYWORDS: BCF, bioconcentration factor, dioxin, DRAGON software, phytoremediation, persistent organic pollutants, POP,
plant, QSAR, soil, SYBYL, VolSurf, zucchini

’ INTRODUCTION

Persistent organic pollutants (POPs)1 are chemical substances
produced by the chemical industry (xenobiotics) and generated
by combustion. Many thousands of POP derivatives contaminate
the environment; several of them are members of homologous
chemical classes, such as polychlorinated dibenzo-p-doxins
(PCDDs) of type I, dibenzofurans (PCDFs) of type II, and
biphenyls (PCBs) of type III (Figure 1). POPs are released into
the environment by many different ways. POPs are persistent in
the environment and accumulate in soil, water, sediment, air, and
biota.2 Exposure to POPs elicits adverse effects on ecosystems
and human health. Some of these compounds (e.g., 2378TCDD,
dioxin) are extremely toxic to humans. One of the important
routes of exposure of humans to POPs is the consumption of
plant products contaminated by these pollutants.3 POPs are
taken up by the plants from the soil through the root system or
from the air by atmospheric transport.4

Human industrial and agricultural activities often contaminate
wide areas, and the development of methods for the removal of
POPs from soils is an intense area of research. The uptake of
POPs from soil by plants allows the development of phyto-
remediation protocols to rehabilitate contaminated areas.5 The
bioconcentration factor (BCF), defined as the ratio between the
contaminant concentration in the plant tissue and the concen-
tration in soil, can be measured to identify plant species useful for
soil rehabilitation purposes.

Pharmacokinetic behavior (absorption, distribution,metabolism,
and excretion; ADME) of POPs in different biological organisms

have been extensively studied by employing diverse quantit-
ative structure-property relationship (QSPR) and quantitative
structure-activity relationship (QSAR) methodologies.6 Several
theoretical descriptors have been reported in the literature that
were found to be useful as independent variables for modeling
and predicting the BCFs of POPs mostly in aquatic target
organisms. The sorption and half-life/degradation of POPs has
been well studied.7 However, the uptake and metabolic fate in
plants are far less studied.

We suggest that once a suitable plant for soil remediation has
been found, QSAR modeling of the ADME behavior of
pollutant(s) in the given soil-plant system is a useful approach
to identify those structural analogues or chemical types that will
be preferentially taken up by the plant. These predictions can be
carried out in silico before any wet experiments are undertaken. The
QSAR models developed can be used for filtering databases of
xenobiotics and identifying those POPs that might be preferentially
taken up by zucchini. The presence of highly accumulating POPs in
a soil, identified by a QSAR model, might alert zucchini growers to
possible contamination of their product by these pollutants.

Some zucchini (Cucurbita pepo subspecies pepo) cultivars
accumulate relatively higher levels of POPs, including PCDDs,
PCDFs, and PCBs, than other plant species, rendering them
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valuable as possible candidates for soil remediation purposes.
Inui et al.8 have studied the differential uptake and reported the
experimental BCF values of a set of 20 PCDDs/PCDFs and 14 PCBs
(Figure 1) in two zucchini cultivars (C. pepo subsp. pepo cv. `Black
Beauty’ (BB) and cv. `Gold Rush’ (GR)) as well as in a non-zucchini
cultivar squash (C. pepo subsp. ovifera cv. `Patty Green’ (PG)).

According to Inui et al.8 there are four critical stages for the
uptake, translocation, and accumulation of hydrophobic com-
pounds from soil in plants: (i) desorption of hydrophobic com-
pounds from soil particles into soil pore-water, (ii) absorption
into roots, (iii) translocation into aerial parts, and (iv) metabolic
stability in plants. It has been suggested by Inui et al.8 that the
release of POPs from soil particles is the key step for uptake into
roots. The mechanisms underlying the difference in accumula-
tion capabilities of diverse plant species is not understood.

These authors found that (i) the BCFs for PCDD and PCDF
congeners negatively correlated with the logP values in all three
subspecies; (ii) the BCFs for PCBs in BB and GR did not
correlate with logP; (iii) in contrast, the BCFs for PCBs in PG
significantly correlated with logP (logP denotes the partition
coefficient of the substance in 1-octanol/water system). The
authors concluded that the species with high accumulating
capabilities had unknown, unique mechanisms for the uptake
of PCBs, whereas PCDDs and PCDFs were taken up on the basis
of their physicochemical properties.

In this study, we have performed a retrospective QSAR study
using the BCF values of 20 PCDDs and PCDFs as well as 14
PCBs in two zucchini varieties based on their BCF values
reported by Inui et al.8 (Table 1). The objective of this study
was the identification of theoretical quantitative descriptors that
can be used for modeling and predicting the BCFs of POPs of
types I, II, and III in BB and GR (BCFBBGR).

’COMPUTATIONAL METHODS

Structures of the 34 POPs for the calculation of DRAGON and
VolSurf descriptors were built manually in the SYBYL v8.0 suite of
molecular modeling programs (SYBYL 8.0; Tripos Inc., St. Louis, MO).
In the next step molecular mechanics geometry optimization was
performed using the Tripos force field with Gasteiger-H€uckel charges
and the conjugate gradient method, with a gradient of 0.01 kcal mol-1

Å-1 as termination criterion. Full geometry optimizations and the
calculation of the semiempirical quantum chemical descriptors were
performed with the AM1 method included in MOPAC of SYBYL using

the “precise” option. SYBYL runs under the Irix 6.5 operating system
implemented on a Silicon Graphics Octane2 R12000 workstation.

The DRAGON descriptors were calculated by means of the software
package DRAGON v5.4, available on the Web,9 providing a diverse set
of 1660 molecular descriptors.10,11

The DRAGON GETAWAY descriptors12-14 are based on the
representation of molecular geometry in terms of an influence matrix
(H-GETAWAY) (eq 1) or influence-distance matrix (R-GETAWAY).
The molecular influence matrix (H) is defined as

H ¼ M 3 ðMT
3MÞ- 1

3M
T ð1Þ

where M is the molecular matrix constituted by the centered Cartesian
coordinates and the superscript T indicates the transposed matrix.

The Moriguchi (MlogP)15 and the Ghose-Crippen (AlogP)16

octanol-water partition coefficients, derived by atom-based prediction
algorithms, were among the DRAGON descriptors.

Table 1. Bioconcentration Factors (BCFBBGR) of the POPs
Studied and Their Negative Logarithm Values (pBCFBBGR)

compound BCFBBGR
a pBCFBBGR

dioxins

368TCDD 6.57� 10-2 1.183

1379TCDD 3.16� 10-2 1.500

2378TCDD 1.39� 10-2 1.858

12378PCDD 2.05� 10-2 1.688

123478HCDD 7.82� 10-3 2.107

123678HCDD 9.36� 10-3 2.029

123789HCDD 9.91� 10-3 2.004

1234678HCDD 2.23� 10-3 2.652

OCDD 2.16� 10-3 2.666

dibenzofurans

1278TCDF 1.40� 10-2 1.853

2378TCDF 3.98 � 10-2 1.400

12378PCDF 1.86� 10-2 1.732

23478PCDF 1.52� 10-2 1.818

123478HCDF 6.43� 10-3 2.192

123678HCDF 6.47� 10-3 2.189

123789HCDF 2.18� 10-3 2.661

234678HCDF 5.56� 10-3 2.255

1234678HCDF 2.04� 10-3 2.691

1234789HCDF 1.01� 10-3 2.998

OCDF 2.09� 10-4 3.680

biphenyls

330440TCB 1.35� 10-2 1.870

34405TCB 1.55� 10-2 1.810

3304405PCB 2.23� 10-2 1.651

330440550HCB 8.24� 10-3 2.084

2330440PCB 1.03� 10-1 0.986

234405PCB 7.17� 10-2 1.145

2304405PCB 1.21� 10-1 0.918

2034405PCB 8.91� 10-2 1.050

23304405HCB 4.76� 10-2 1.322

233044050HCB 4.76� 10-2 1.322

230440550HCB 1.76� 10-2 1.754

2330440550HCB 1.09� 10-2 1.961

2203304405HCB 2.66� 10-2 1.575

2203440550HCB 2.95� 10-2 1.530
aBioconcentration factors (BCFBBGR) reported by Inui et al.8

Figure 1. Structures of polychlorinated dioxins (PCDDs, I), dibenzo-
furans (PCDFs, II), and biphenyls (PCBs, III).
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The VolSurf descriptors17 were calculated using the VolSurf program
module of SYBYL. VolSurf is a computational program to generate 2D
molecular descriptors from 3D molecular interaction energy grid maps.
The basic idea of VolSurf is to compress the information present in 3D
maps into a few 2D numerical descriptors that are simple to understand
and to interpret. VolSurf descriptors are specifically designed for the in
silico optimization of ADME properties governing the absorption,
distribution, metabolism, and excretion of chemical substances in hu-
mans. These descriptors quantitatively characterize the size, shape,
polarity, and hydrophobicity of molecules as well as the balance between
them. All of the available GRID probes have been used in the calculation
of the VolSurf descriptors. These were the water probe (OH2); the
hydrophobic probe (DRY); the amphipatic probe (BOTH); the carbo-
nyl oxygen atom probe (O); anionic sp2 carboxy oxygen atom probe
(O::); neutral flat NH (e.g., amide) probe (N1); sp2 nitrogen with one
lone pair probe (N:=); sp3 amine NH3 cation probe and (N3þ); and
sp2 phenolate oxygen atom probe (O-). Grid spacing was set to 0.5 Å.
Forward stepwise regression analysis of the data set was performed

using STATISTICA v6.1 software (StatSoft, Inc., 2003) running on a
PC (Intel(R) Core(TM)2 Duo, 2.33 GHz CPU; Microsoft Windows
XP operating system).
Partial least-squares (PLS) analysis of latent variables was carried out

using the PLSmodule in SYBYL v8.0. PLS regression analysis is based on
linear combination reducing a large number of original descriptors to a

small number of orthogonal factors (latent variables) providing the
optimal linear model in terms of predictivity. Predictive capability of the
model is quantified by cross-validation using the leave-one-out (LOO)
cross-validation technique (q2). The number of accepted latent variables
was based on the first local maximum of q2.

Variable selection from the set of 1660 DRAGON descriptors has
been carried out as follows: variables with zero variance and the ones that
showed r2 e 0.3 coefficient of determination with pBCF have been
omitted, yielding a subset of 467 descriptors. For the set of 150 VolSurf
descriptors and the 11 quantum chemical descriptors, calculated using
SYBYL MOPAC, the cutoff value of the coefficient of determination
with pBCFwas set to r2e 0.2, yielding 51 and 4 descriptors, respectively
(Var = 0 was not found). Variable selection resulted in a set of 522
descriptors including 467 DRAGON þ 51 VolSurf þ 4 semiempirical
quantum chemical parameters. Table 2 shows the descriptors displaying
r2 g 0.65 correlation with BCFBBGR. In the next step, cross-correlation
between the 522 descriptors was calculated, and from the pairs that
showed r2 > 0.9 correlation, one of the descriptors has been discarded.
Finally, a set of 496 descriptors has been selected and used in the present
modeling study. The BCF data for BB and GR showed high correlation
and small standard deviation (r2 = 0.982, s = 0.0037), indicating that the
experimental error of the BCF values must have been very small.

In our study the average of the BB and GR data (BCFBBGR) and
the logarithm of their reciprocal values (pBCFBBGR) were used as

Table 2. Descriptors Showing r2 g 0.65 Correlation with BCFBBGR

type descriptor definition r2 with pBCFBBGR

DRAGON descriptors

connectivity indices19 IVDE mean information content on the

vertex degree equality

0.778

3D-MoRSE descriptors20 Mor03m 3D-MoRSE - signal 03/weighted

by atomic masses

0.688

Mor03v 3D-MoRSE - signal 03/weighted

by atomic van der Waals volumes

0.684

WHIM descriptors21 L2u second component size directional

WHIM index/unweighted

0.712

L2v second component size directional WHIM

index/weighted by atomic van der Waals volumes

0.689

L2e second component size directional WHIM

index/weighted by atomic Sanderson electronegativities

0.749

L2p second component size directional WHIM

index/weighted by atomic polarizabilities

0.670

GETAWAY descriptors

H4v H autocorrelation of lag 4/weighted by atomic van der

Waals volumes

0.660

H5v H autocorrelation of lag 5/weighted by atomic van der

Waals volumes

0.645

H6v H autocorrelation of lag 6/weighted by atomic van der

Waals volumes

0.684

H4p H autocorrelation of lag 4/weighted by atomic polarizabilities 0.725

H5p H autocorrelation of lag 5/weighted by atomic polarizabilities 0.661

H6p H autocorrelation of lag 6/weighted by atomic polarizabilities 0.683

VolSurf descriptors

hydrophobic probes D4DRY calculated at -0.8 kcal/mol energy level 0.685

D6DRY calculated at -1.2 kcal/mol energy level 0.704

D7DRY calculated at -1.4 kcal/mol energy level 0.693

D8DRY calculated at -1.6 kcal/mol energy level 0.676

quantum chemical descriptor

LUMO energy lowest unoccupied molecular orbital energy 0.695
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dependent variables. Two sets of 27 compounds each (sets 1 and 2) were
generated by randomly omitting 7-7 compounds from the complete set
of 34 compounds and used for model building. The two 7-compound
sets were used for external validation of the regression equations
developed.

’RESULTS AND DISCUSSION

The calculations yielded statistically significant linear regres-
sion models for the pBCFBBGR values of the PCDD, PCDF, and
PCB derivatives shown in Table 1. Stepwise regression analyses
based on two 27 � 496 data matrices yielded four regression
models, eqs 2 and 3 for set 1 and eqs 4 and 5 for set 2. The
stepwise regression analysis has been repeated several times, each
time leaving out the next descriptor with the highest contribution
to the equation that could not be interpreted. In the next step
PLS analysis of the selected descriptor set of the final regression
models has been performed, yielding leave-one-out (LOO)
cross-validated correlation coefficients (q2LOO). The following
representative models (eqs 2-5) have been selected on the basis
of the statistical parameters of the equations and the interpret-
ability of the descriptors.

pBCFBBGR ¼ 7:356H4p- 0:002VOH2þ 0:016D3DRY

þ 0:072W4O- 0:320 ð2Þ

n ¼ 27; R2 ¼ 0:921; q2 ¼ 0:886; SE ¼ 0:186; F ¼ 89:4

external validation set: n ¼ 7; R2 ¼ 0:831; q2 ¼ 0:563;

SE ¼ 0:273; F ¼ 24:5

pBCFBBGR ¼ 5:519H4pþ 0:092BV31OH2þ 0:070W4O

þ 0:257Z-component- 0:175 ð3Þ

n ¼ 27; R2 ¼ 0:940; q2 ¼ 0:922; SE ¼ 0:155; F ¼ 392:1

external validation set: n ¼ 7; R2 ¼ 0:739; q2 ¼ 0:477;

SE ¼ 0:338; F ¼ 14:2

pBCFBBGR ¼ 5:347H4pþ 0:077BV31OH2- 0:017HB5O::

- 0:588ðLUMO-HOMOÞþ 4:869 ð4Þ

n ¼ 27; R2 ¼ 0:921; q2 ¼ 0:898; SE ¼ 0:161; F ¼ 140:4

external validation set: n ¼ 7; R2 ¼ 0:826; q2 ¼ 0:530;

SE ¼ 0:388; F ¼ 23:7

pBCFBBGR ¼ 0:043D6DRYþ 1:253H5eþ 0:084BV31OH2

þ 0:197Z-component- 1:214 ð5Þ

n ¼ 27; R2 ¼ 0:918; q2 ¼ 0:880; SE ¼ 0:164; F ¼ 134:3

external validation set: n ¼ 7; R2 ¼ 0:921; q2 ¼ 0:795;

SE ¼ 0:261; F ¼ 58:6

The values of the determination coefficient (R2) for eqs 2-5
are above 0.9, so these models explain >90% of the variance of the
pBCF. All equations show excellent internal predictive capabil-
ities displaying q2LOO ≈ 0.9 values as calculated by PLS analysis.

Equation 2 contains three VolSurf (VOH2, W4O, and
D3DRY) and one DRAGON GETAWAY (H4p) descriptor;
eq 3 contains two VolSurf (W4O and BV31OH2), one DRA-
GONGETAWAY (H4p), and one quantum chemical descriptor
(Z-component); eq 4 contains two VolSurf (BV31OH2 and
HB5O::), one DRAGONGETAWAY (H4p), and one quantum
chemical descriptor (LUMO-HOMO); eq 5 contains two
VolSurf (D6DRY and BV31OH2), one DRAGON GETAWAY
(H5e), and one quantum chemical descriptor (Z-component).
The relative contributions, as well as the determination coeffi-
cients (r2), q2, and F values with pBCFBBGR of these descriptors
for the complete set of 34 compounds are shown in Table 3.

Definitions of the selected descriptors are the following:
VOH2, molecular volume given as water solvent excluded
volume (in Å3), that is, the volume contained within the water-
accessible surface of the molecule computed at 0.20 kcal/mol;
W4O, calculated at -2.0 kcal/mol energy level with carbonyl

Table 3. Relative Contributions in Equations 2-4 and r2, q2LOO, and F Values of the Descriptors Included

contribution (%) correlation with pBCFBBGR calculated for 34 compounds

set 1 set 2

descriptor eq 2 eq 3 eq 4 eq 5 r2 q2 F

VolSurf

VOH2 10.5 0.264 0.165 11.5

W4O 26.0 26.3 0.423 0.361 23.4

D3DRY 21.9 0.623 0.549 52.9

D6DRY 39.7 0.704 0.646 76.3

BV31OH2 24.2 20.7 22.6 0.319 0.205 11.5

HB5O:: 20.6

DRAGON GETAWAY

H4p 41.6 32.3 33.5 0.725 0.678 84.6

H5e 22.5 0.373 0.284 19.0

quantum chemical

LUMO energy 0.695 0.646 72.9

hardness 25.2 0.453 0.368 27.5

Z-component of dipole moment 17.2 15.2 0.229 0.121 9.5
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oxygen probe atom bonded to a single other atom, which accepts
two hydrogen bonds in the direction of its lone pairs; this
descriptor represents the molecular envelope accessible by the
probe atom; D3DRY and D6DRY, hydrophobic descriptors
calculated at-0.6 and-1.2 kcal/mol energy levels, respectively;
BV31OH2, best volume descriptor representing one of the best
hydrophilic volumes generated by a water probe calculated at-1
kcal/mol energy level; HB5O::, a hydrogen bond descriptor
calculated with carboxyl oxygen probe; H4p, GETAWAY de-
scriptor H autocorrelation of lag 4/weighted by atomic polariz-
abilities; H5e, GETAWAY descriptor H autocorrelation of lag 5/
weighted by atomic Sanderson electronegativities; (LUMO-
HOMO) (chemical hardness), quantum chemical descriptor,
the difference of LUMO and HOMO energies, where LUMO
and HOMO refer to the energy of the lowest unoccupied
and highest occupied molecular orbitals, respectively;18

Z-component, Z-component of the dipole moment; VolSurf LogP,
directly calculated according to internal equations by the
program.

The predictive power of the regression equations (eqs 2-5)
has been tested using two sets of randomly selected compounds,
each containing seven substances, for external validation. Table 4
shows the validation set compounds and the differences between
their experimental and predicted values (residuals) calculated by
the regression equations (eqs 2-5). The magnitude of the
residuals for the external validation set compounds remained
close to the range of the standard deviation (SE) calculated by
the regression equations for the compounds in sets 1 and 2. The
magnitude of the residuals indicated that the pBCFBBGR values of
POPs not used in model building can be predicted with reason-
able accuracy. Figure 2 shows the plot of the calculated versus
experimental pBCFBBGR values for training set (open circles) and
external validation set (solid circles) compounds for set 1
calculated using eq 2.

So far, only a few QSAR studies on the BCF values of POPs in
plants have been published,22 and this is the first study to use
VolSurf descriptors for modeling the ADME behavior of POPs in
a plant.

In classical QSAR analysis studies of ADME phenomena the
relationship between lipophilicity (usually logP) and the experi-
mental dependent variable (e.g., BCF) is routinely examined. In
this study the logP values of the compounds were estimated by
three different methods and correlated with the BCFBBGR values
of the individual PCDD, PCDF, and PCB compound sets and the
united set of the PCDDs and PCDFs, as well as the complete set
of all 34 compounds. The calculated correlations with logP values
are shown in Table 5.

The BCFBBGR values of PCDDs and PCDFs separately and
together show certain correlations with their logP values and the
number of Cl atoms in the molecule (NCl) (Table 5). In contrast,
neither the PCBs nor the united set of all 34 compounds shows
statistically significant correlation with logP.

Pavan et al.6 gave a comprehensive review of QSAR models
reported for bioconcentration. Typically, fish are the target
organisms of BCF assessments due to the importance of fish as
a human food source and the availability of standardized testing
protocols. BCF models on fish can be based on experimentally
derived and theoretical molecular descriptors. In general, most of
the QSAR models reported for the prediction of BCF in
regulatory context are based on the correlation of logBCF with
logKOW (logP). In the European Union Technical Guidance
Document (TGD) on Risk Assessment,23 the QSAR models

Table 4. Validation Set Compounds and the Differences
between Their Experimental and Predicted Values
(Residuals) Calculated by the Regression Equations
(Equations 2-5)

residuals

validation set compound eq 2 eq 3

set 1 1368TCDD -0.404 -0.381

1234678HCDD 0.424 0.499

12378PCDF -0.227 -0.267

1234678HCDF -0.088 -0.130

34405TCB 0.092 0.239

23304405HCB -0.072 -0.047

2203440550HCB -0.140 -0.223

residuals

validation set compound eq 4 eq 5

set 2 1379TCDD -0.013 0.056

123789HCDD -0.084 -0.006

12378PCDF -0.294 -0.260

OCDF 0.419 0.571

330440TCB 0.425 0.365

2304405PCB -0.476 -0.201

2330440550HCB 0.408 0.063

Figure 2. Calculated versus experimental pBCFBBGR values for training
set (O) and external validation set (b) compounds for set 1 calculated
using eq 2. Dashed lines denote 95% confidence interval.

Table 5. Correlations (r2) between BCFBBGR of POPs and
Some of Their Molecular Descriptors Related to Hydropho-
bicitya

r2

POP NCl MLogP ALogP VolSurf LogP

dioxins (þ) 0.833 (þ) 0.832 (þ) 0.833 (þ) 0.733

dibenzofurans (-) 0.872 (-) 0.866 (-) 0.872 (-) 0.846

dioxins and benzofurans (-) 0.793 (-) 0.511 (-) 0.827 (-) 0.065

biphenyls (þ) 0.036 (-) 0.068 (þ) 0.036 (þ) 0.088

all (þ) 0.391 (-) 0.026 (þ) 0.363 (þ) 0.078
a (þ) and (-) symbols denote the sign of the slope of the regression
equations.
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suggested for estimating the bioconcentration factor for aquatic
organisms are based on the relationship between logBCF and
logKOW. For terrestrial plants no such guidance is available.

The most widely used expert system for BCF prediction,
BCFWIN, developed by Syracuse Research Corp., is freely
downloadable from the U.S. Environmental Protection Agency
(EPA) Web site.24 It incorporates the QSARs developed by
Meylan et al.25

The five non-VolSurf descriptors selected by us for modeling
of the BCFBBGR values of POPs for the uptake and bioaccumula-
tion to zucchini were H4p, H5e LUMO energy, (LUMO-
HOMO), and Z-component. Some of these descriptors have
already been used inQSAR studies for modeling of BCF values in
fish.26,27

LUMO is the lowest energy level in the molecule that contains
no electrons. When a molecule acts as a Lewis acid (an electron-
pair acceptor) in bond formation, incoming electron pairs are
received in its LUMO. Molecules with low LUMO energies are
more able to accept electrons than those with high LUMO
energies; thus, the LUMO descriptor should measure the
electrophilicity of a molecule. It is important in governing
molecular reactivity and properties.28

H5e is one of the GETAWAY descriptors that have been
proposed with the aim of matching 3D molecular geometry,
atom relatedness, and chemical information. The GETAWAY
descriptors are extensively used for QSPR and BCF modeling29

of diverse compounds.
The interpretation of VolSurf descriptors is relatively straight-

forward. The local values of the VolSurf descriptors on the 3D
structure of a molecule can be visualized by color code contours.
These contours highlight certain interaction capabilities of the
molecules in 3D that have significant importance in explaining
the variance in the dependent variable modeled, that is,
pBCFBBGR. Polarizability, hydrophobic effects, solvent-excluded
volume, hydrophobic volume, and hydrogen bonding seem to be
all important molecular properties governing molecular interac-
tions of the POPs in the plant, and as such influencing uptake and
accumulation. In our case the W4O descriptor accounts for
polarizability; D3DRY and D6DRY represent hydrophobic en-
ergy calculated with the DRY probes; VOH2 quantifies molec-
ular volume given as water solvent excluded volume (Å3), that is,
the volume contained within the water accessible surface calcu-
lated at a certain energy level (kcal/mol); BV31OH2 is the “best
volume” descriptor representing the local hydrophobic volumes
calculated at a certain energy level (kcal/mol); and HB5O:: is a
descriptor for hydrogen bonding, which is one of the most
important intermolecular interaction types in living matter.
The regression equations developed (eqs 2-5) containing these
descriptors can be used as filters for identifying those compounds
in compound libraries of any size that have the same molecular
interaction properties in 3D as the training set POPs used for
developing the model equations.

In conclusion, the regression models (eqs 2-5) developed
for the uptake and accumulation of representative PCDDs,
PCDFs, and PCBs (Figure 1) in zucchini are statistically highly
significant. Predictive capabilities of the models have been
tested using two external validation sets showing that the
pBCFBBGR values of POPs not used in model building can be
predicted with reasonable accuracy. The regression models
revealed that the POPs taken up preferentially from soil by
the two zucchini subspecies (BB and GR) are characterized by
low H4p, high VOH2, low D3DRY, low W4O, low BV31OH2,

low Z-component, high HB5O::, high LUMO-HOMO, low
D6DRY, and low H5e descriptor values (see eqs 2-5). VolSurf
descriptors, originally developed for modeling pharmacokinetic
properties of drugs in mammals, were found to be useful also in
modeling the ADME properties of POPs of types I-III in
plants. The use of these descriptors for filtering compound
libraries may help in identifying chemical substances preferen-
tially taken up by the zucchini plants. We suggest that in a wider
context the use of these types of chemical descriptors might
serve an alerting purpose by identifying those environmental
contaminants that might be preferentially taken up from the soil
by certain plant species. We suggest that the present study
contributes to the development of viable soil remediation
strategies.
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